HP 48gII Graphing Calculator Manuale Utente Pagina 192

  • Scaricare
  • Aggiungi ai miei manuali
  • Stampa
  • Pagina
    / 864
  • Indice
  • SEGNALIBRI
  • Valutato. / 5. Basato su recensioni clienti
Vedere la pagina 191
Page 5-21
The LAGRANGE function
The function LAGRANGE requires as input a matrix having two rows and n
columns. The matrix stores data points of the form [[x
1
,x
2
, …, x
n
] [y
1
, y
2
, …,
y
n
]]. Application of the function LAGRANGE produces the polynomial
expanded from
.
)(
)(
)(
1
,1
,1
1 j
n
j
n
jkk
kj
n
jkk
k
n
y
xx
xx
xp
=
=
=
=
For example, for n = 2, we will write:
21
211221
2
12
1
1
21
2
1
)()(
)(
xx
xyxyxyy
y
xx
xx
y
xx
xx
xp
+
=
+
=
Check this result with your calculator:
LAGRANGE([[ x1,x2],[y1,y2]]) = ‘((y1-y2)*X+(y2*x1-y1*x2))/(x1-x2)’.
Other examples: LAGRANGE([[1, 2, 3][2, 8, 15]]) = ‘(X^2+9*X-6)/2’
LAGRANGE([[0.5,1.5,2.5,3.5,4.5][12.2,13.5,19.2,27.3,32.5]]) =
‘-(.1375*X^4+ -.7666666666667*X^3+ - .74375*X^2 =
1.991666666667*X-12.92265625)’.
Note: Matrices are introduced in Chapter 10.
The LCM function
The function LCM (Least Common Multiple) obtains the least common multiple
of two polynomials or of lists of polynomials of the same length. Examples:
LCM(‘2*X^2+4*X+2’ ,‘X^2-1’ ) = ‘(2*X^2+4*X+2)*(X-1)’.
LCM(‘X^3-1’,‘X^2+2*X’) = ‘(X^3-1)*( X^2+2*X)’
Vedere la pagina 191
1 2 ... 187 188 189 190 191 192 193 194 195 196 197 ... 863 864

Commenti su questo manuale

Nessun commento